2,794 research outputs found

    Deep reconditioning of batteries during DSCS 3 flight operations

    Get PDF
    Deep reconditioning of batteries is defined as discharge below the 1.0 volt/cell level to a value of about 1.0 volt/battery. This type of reconditioning was investigated for use on the Defense Satellite Communications System (DSCS) spacecraft, and has been used during the first year of orbital operation. Prior to launch of the spacecraft, the deep reconditioning was used during the battery life test, which has now complete fourteen eclipse periods. Reconditioning was performed prior to each eclipse period of the life test, and is scheduled to be used prior to each eclipse period in orbit. The battery data for discharge and recharge is presented for one of the life test reconditioning cycles, and for each of the three batteries during the reconditioning cycles between eclipse period no.1 and eclipse period no.2 in Earth orbit

    Nocturnal and Tidal Vertical Migrations of Benthic Crustaceans in an Estuarine System With Diurnal Tides

    Get PDF
    Two field studies involving periodic sampling of the surface waters of the upper reaches of the Fowl River estuary in southwestern Alabama were completed to describe temporal changes in the densities of selected species of crustaceans larger than 505 μm. Regardless of tidal phase, triplicate 5-min surface tows collected very few crustaceans during the day, while nighttime zooplankton samples showed much higher densities of the amphipods Gammarus tigrinus, Corophium lacustre, Grandidierella bonnieroides, the isopod Munna reynoldsi, the cumacean Almyracuma proximoculi and the mysids Taphromysis spp. These results strongly indicate nocturnal vertical migration by crustaceans that are traditionally considered benthic. In addition, these species showed significantly higher densities near the water surface during nocturnal flood tides than during nocturnal ebb tides, indicating tidal vertical migration. These crustaceans are reported to inhabit low-salinity areas, and a transect along the length of this estuary showed relatively higher densities of these crustaceans in the lower-salinity waters upstream than in the higher-salinity waters downstream. While the adaptive value of vertical migration for an otherwise benthic organism is not clear, the nocturnal and tidal timing of such a migration appears to provide these oligohaline-mesohaline crustaceans with a behavioral mechanism that generally retains them in the upper reaches of the estuary with minimal exposure to visual predation in the water column

    Optimal band selection for dimensionality reduction of hyperspectral imagery

    Get PDF
    Hyperspectral images have many bands requiring significant computational power for machine interpretation. During image pre-processing, regions of interest that warrant full examination need to be identified quickly. One technique for speeding up the processing is to use only a small subset of bands to determine the 'interesting' regions. The problem addressed here is how to determine the fewest bands required to achieve a specified performance goal for pixel classification. The band selection problem has been addressed previously Chen et al., Ghassemian et al., Henderson et al., and Kim et al.. Some popular techniques for reducing the dimensionality of a feature space, such as principal components analysis, reduce dimensionality by computing new features that are linear combinations of the original features. However, such approaches require measuring and processing all the available bands before the dimensionality is reduced. Our approach, adapted from previous multidimensional signal analysis research, is simpler and achieves dimensionality reduction by selecting bands. Feature selection algorithms are used to determine which combination of bands has the lowest probability of pixel misclassification. Two elements required by this approach are a choice of objective function and a choice of search strategy

    The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines

    Get PDF
    Supplementary to the efficient inhibition of trypsin, chymotrypsin, plasma kallikrein, and plasmin already described by the EcTI inhibitor from Enterolobium contortisiliquum, it also blocks human neutrophil elastase (K(iapp)=4.3 nM) and prevents phorbol ester (PMA)-stimulated activation of matrix metalloproteinase (MMP)-2 probably via interference with membrane-type 1 (MT1)-MMP. Moreover, plasminogen-induced activation of proMMP-9 and processing of active MMP-2 was also inhibited. Furthermore, the effect of EcTI on the human cancer cell lines HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), K562 and THP-1 (leukemia), as well as on human primary fibroblasts and human mesenchymal stem cells (hMSCs) was studied. EcTI inhibited in a concentration range of 1.0-2.5 mu M rather specifically tumor cell viability without targeting primary fibroblasts and hMSCs. Taken together, our data indicate that the polyspecific proteinase inhibitor EcTI prevents proMMP activation and is cytotoxic against tumor cells without affecting normal tissue remodeling fibroblasts or regenerative hMSCs being an important tool in the studies of tumor cell development and dissemination

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    D- Production By Charge Transfer Of (0.3 - 3)-keV D+ In Thick Alkaline-earth Vapor Targets: Interaction Energies For CaH+, CaH, And CaH-

    Get PDF
    Equilibrium charge-state fractions of energetic deuterium ions and atoms emerging from alkaline-earth (magnesium, calcium, strontium, and barium) vapor targets are reported in the range of 0.3- to 3-keV incident D+ energy. Deuterium negative-ion production in thick barium and calcium vapor targets equals similar production in cesium vapor (34%). Moreover, the maximum D- production in strontium vapor exceeds that for all other known gas or vapor targets and reaches 50% at 500 eV. Theory does not quantitatively describe these results, although ab initio molecular-interaction-energy calculations on the neutral and negative-ion CaH systems lead to the prediction of large D- yields at low energies. The theoretical prediction is based on the lack of a strong coupling between the negative ion and neutral molecular states. This implies that there are small D- electron-detachment cross sections at energies less than 1 keV. The present measurements agree with previous measurements done at higher energies. © 1982 The American Physical Society

    Hibernation is associated with increased survival and the evolution of slow life histories among mammals

    Get PDF
    Survival probability is predicted to underlie the evolution of life histories along a slow–fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories

    Future Evolution of Greenland\u27s Marine-Terminating Outlet Glaciers

    Get PDF
    Mass loss from the Greenland ice sheet (GrIS) has increased over the last two decades in response to changes in global climate, motivating the scientific community to question how the GrIS will contribute to sea-level rise on timescales that are relevant to coastal communities. Observations also indicate that the impact of a melting GrIS extends beyond sea-level rise, including changes to ocean properties and circulation, nutrient and sediment cycling, and ecosystem function. Unfortunately, despite the rapid growth of interest in GrIS mass loss and its impacts, we still lack the ability to confidently predict the rate of future mass loss and the full impacts of this mass loss on the globe. Uncertainty in GrIS mass loss projections in part stems from the nonlinear response of the ice sheet to climate forcing, with many processes at play that influence how mass is lost. This is particularly true for outlet glaciers in Greenland that terminate in the ocean because their flow is strongly controlled by multiple processes that alter their boundary conditions at the ice-atmosphere, ice-ocean, and ice-bed interfaces. Many of these processes change on a range of overlapping timescales and are challenging to observe, making them difficult to understand and thus missing in prognostic ice sheet/climate models. For example, recent (beginning in the late 1990s) mass loss via outlet glaciers has been attributed primarily to changing ice-ocean interactions, driven by both oceanic and atmospheric warming, but the exact mechanisms controlling the onset of glacier retreat and the processes that regulate the amount of retreat remain uncertain. Here we review the progress in understanding GrIS outlet glacier sensitivity to climate change, how mass loss has changed over time, and how our understanding has evolved as observational capacity expanded. Although many processes are far better understood than they were even a decade ago, fundamental gaps in our understanding of certain processes remain. These gaps impede our ability to understand past changes in dynamics and to make more accurate mass loss projections under future climate change. As such, there is a pressing need for (1) improved, long-term observations at the ice-ocean and ice-bed boundaries, (2) more observationally constrained numerical ice flow models that are coupled to atmosphere and ocean models, and (3) continued development of a collaborative and interdisciplinary scientific community

    Mutation of Directed Graphs -- Corresponding Regular Expressions and Complexity of Their Generation

    Full text link
    Directed graphs (DG), interpreted as state transition diagrams, are traditionally used to represent finite-state automata (FSA). In the context of formal languages, both FSA and regular expressions (RE) are equivalent in that they accept and generate, respectively, type-3 (regular) languages. Based on our previous work, this paper analyzes effects of graph manipulations on corresponding RE. In this present, starting stage we assume that the DG under consideration contains no cycles. Graph manipulation is performed by deleting or inserting of nodes or arcs. Combined and/or multiple application of these basic operators enable a great variety of transformations of DG (and corresponding RE) that can be seen as mutants of the original DG (and corresponding RE). DG are popular for modeling complex systems; however they easily become intractable if the system under consideration is complex and/or large. In such situations, we propose to switch to corresponding RE in order to benefit from their compact format for modeling and algebraic operations for analysis. The results of the study are of great potential interest to mutation testing
    corecore